seaborn.
regplot
(x, y, data=None, x_estimator=None, x_bins=None, x_ci='ci', scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, order=1, logistic=False, lowess=False, robust=False, logx=False, x_partial=None, y_partial=None, truncate=False, dropna=True, x_jitter=None, y_jitter=None, label=None, color=None, marker='o', scatter_kws=None, line_kws=None, ax=None)¶Plot data and a linear regression model fit.
There are a number of mutually exclusive options for estimating the regression model. See the tutorial for more information.
Parameters: | x, y: string, series, or vector array
data : DataFrame
x_estimator : callable that maps vector -> scalar, optional
x_bins : int or vector, optional
x_ci : “ci”, “sd”, int in [0, 100] or None, optional
scatter : bool, optional
fit_reg : bool, optional
ci : int in [0, 100] or None, optional
n_boot : int, optional
units : variable name in
order : int, optional
logistic : bool, optional
lowess : bool, optional
robust : bool, optional
logx : bool, optional
{x,y}_partial : strings in
truncate : bool, optional
{x,y}_jitter : floats, optional
label : string
color : matplotlib color
marker : matplotlib marker code
{scatter,line}_kws : dictionaries
ax : matplotlib Axes, optional
|
---|---|
Returns: | ax : matplotlib Axes
|
See also
Notes
The regplot()
and lmplot()
functions are closely related, but
the former is an axes-level function while the latter is a figure-level
function that combines regplot()
and FacetGrid
.
It’s also easy to combine combine regplot()
and JointGrid
or
PairGrid
through the jointplot()
and pairplot()
functions, although these do not directly accept all of regplot()
’s
parameters.
Examples
Plot the relationship between two variables in a DataFrame:
>>> import seaborn as sns; sns.set(color_codes=True)
>>> tips = sns.load_dataset("tips")
>>> ax = sns.regplot(x="total_bill", y="tip", data=tips)
Plot with two variables defined as numpy arrays; use a different color:
>>> import numpy as np; np.random.seed(8)
>>> mean, cov = [4, 6], [(1.5, .7), (.7, 1)]
>>> x, y = np.random.multivariate_normal(mean, cov, 80).T
>>> ax = sns.regplot(x=x, y=y, color="g")
Plot with two variables defined as pandas Series; use a different marker:
>>> import pandas as pd
>>> x, y = pd.Series(x, name="x_var"), pd.Series(y, name="y_var")
>>> ax = sns.regplot(x=x, y=y, marker="+")
Use a 68% confidence interval, which corresponds with the standard error of the estimate:
>>> ax = sns.regplot(x=x, y=y, ci=68)
Plot with a discrete x
variable and add some jitter:
>>> ax = sns.regplot(x="size", y="total_bill", data=tips, x_jitter=.1)
Plot with a discrete x
variable showing means and confidence intervals
for unique values:
>>> ax = sns.regplot(x="size", y="total_bill", data=tips,
... x_estimator=np.mean)
Plot with a continuous variable divided into discrete bins:
>>> ax = sns.regplot(x=x, y=y, x_bins=4)
Fit a higher-order polynomial regression and truncate the model prediction:
>>> ans = sns.load_dataset("anscombe")
>>> ax = sns.regplot(x="x", y="y", data=ans.loc[ans.dataset == "II"],
... scatter_kws={"s": 80},
... order=2, ci=None, truncate=True)
Fit a robust regression and don’t plot a confidence interval:
>>> ax = sns.regplot(x="x", y="y", data=ans.loc[ans.dataset == "III"],
... scatter_kws={"s": 80},
... robust=True, ci=None)
Fit a logistic regression; jitter the y variable and use fewer bootstrap iterations:
>>> tips["big_tip"] = (tips.tip / tips.total_bill) > .175
>>> ax = sns.regplot(x="total_bill", y="big_tip", data=tips,
... logistic=True, n_boot=500, y_jitter=.03)
Fit the regression model using log(x) and truncate the model prediction:
>>> ax = sns.regplot(x="size", y="total_bill", data=tips,
... x_estimator=np.mean, logx=True, truncate=True)