seaborn.
FacetGrid
(data, row=None, col=None, hue=None, col_wrap=None, sharex=True, sharey=True, height=3, aspect=1, palette=None, row_order=None, col_order=None, hue_order=None, hue_kws=None, dropna=True, legend_out=True, despine=True, margin_titles=False, xlim=None, ylim=None, subplot_kws=None, gridspec_kws=None, size=None)¶Multi-plot grid for plotting conditional relationships.
__init__
(data, row=None, col=None, hue=None, col_wrap=None, sharex=True, sharey=True, height=3, aspect=1, palette=None, row_order=None, col_order=None, hue_order=None, hue_kws=None, dropna=True, legend_out=True, despine=True, margin_titles=False, xlim=None, ylim=None, subplot_kws=None, gridspec_kws=None, size=None)¶Initialize the matplotlib figure and FacetGrid object.
This class maps a dataset onto multiple axes arrayed in a grid of rows and columns that correspond to levels of variables in the dataset. The plots it produces are often called “lattice”, “trellis”, or “small-multiple” graphics.
It can also represent levels of a third varaible with the hue
parameter, which plots different subets of data in different colors.
This uses color to resolve elements on a third dimension, but only
draws subsets on top of each other and will not tailor the hue
parameter for the specific visualization the way that axes-level
functions that accept hue
will.
When using seaborn functions that infer semantic mappings from a
dataset, care must be taken to synchronize those mappings across
facets. In most cases, it will be better to use a figure-level function
(e.g. relplot()
or catplot()
) than to use
FacetGrid
directly.
The basic workflow is to initialize the FacetGrid
object with
the dataset and the variables that are used to structure the grid. Then
one or more plotting functions can be applied to each subset by calling
FacetGrid.map()
or FacetGrid.map_dataframe()
. Finally, the
plot can be tweaked with other methods to do things like change the
axis labels, use different ticks, or add a legend. See the detailed
code examples below for more information.
See the tutorial for more information.
Parameters: | data : DataFrame
row, col, hue : strings
col_wrap : int, optional
share{x,y} : bool, ‘col’, or ‘row’ optional
height : scalar, optional
aspect : scalar, optional
palette : palette name, list, or dict, optional
{row,col,hue}_order : lists, optional
hue_kws : dictionary of param -> list of values mapping
legend_out : bool, optional
despine : boolean, optional
margin_titles : bool, optional
{x, y}lim: tuples, optional
subplot_kws : dict, optional
gridspec_kws : dict, optional
|
---|
See also
Examples
Initialize a 2x2 grid of facets using the tips dataset:
>>> import seaborn as sns; sns.set(style="ticks", color_codes=True)
>>> tips = sns.load_dataset("tips")
>>> g = sns.FacetGrid(tips, col="time", row="smoker")
Draw a univariate plot on each facet:
>>> import matplotlib.pyplot as plt
>>> g = sns.FacetGrid(tips, col="time", row="smoker")
>>> g = g.map(plt.hist, "total_bill")
(Note that it’s not necessary to re-catch the returned variable; it’s the same object, but doing so in the examples makes dealing with the doctests somewhat less annoying).
Pass additional keyword arguments to the mapped function:
>>> import numpy as np
>>> bins = np.arange(0, 65, 5)
>>> g = sns.FacetGrid(tips, col="time", row="smoker")
>>> g = g.map(plt.hist, "total_bill", bins=bins, color="r")
Plot a bivariate function on each facet:
>>> g = sns.FacetGrid(tips, col="time", row="smoker")
>>> g = g.map(plt.scatter, "total_bill", "tip", edgecolor="w")
Assign one of the variables to the color of the plot elements:
>>> g = sns.FacetGrid(tips, col="time", hue="smoker")
>>> g = (g.map(plt.scatter, "total_bill", "tip", edgecolor="w")
... .add_legend())
Change the height and aspect ratio of each facet:
>>> g = sns.FacetGrid(tips, col="day", height=4, aspect=.5)
>>> g = g.map(plt.hist, "total_bill", bins=bins)
Specify the order for plot elements:
>>> g = sns.FacetGrid(tips, col="smoker", col_order=["Yes", "No"])
>>> g = g.map(plt.hist, "total_bill", bins=bins, color="m")
Use a different color palette:
>>> kws = dict(s=50, linewidth=.5, edgecolor="w")
>>> g = sns.FacetGrid(tips, col="sex", hue="time", palette="Set1",
... hue_order=["Dinner", "Lunch"])
>>> g = (g.map(plt.scatter, "total_bill", "tip", **kws)
... .add_legend())
Use a dictionary mapping hue levels to colors:
>>> pal = dict(Lunch="seagreen", Dinner="gray")
>>> g = sns.FacetGrid(tips, col="sex", hue="time", palette=pal,
... hue_order=["Dinner", "Lunch"])
>>> g = (g.map(plt.scatter, "total_bill", "tip", **kws)
... .add_legend())
Additionally use a different marker for the hue levels:
>>> g = sns.FacetGrid(tips, col="sex", hue="time", palette=pal,
... hue_order=["Dinner", "Lunch"],
... hue_kws=dict(marker=["^", "v"]))
>>> g = (g.map(plt.scatter, "total_bill", "tip", **kws)
... .add_legend())
“Wrap” a column variable with many levels into the rows:
>>> att = sns.load_dataset("attention")
>>> g = sns.FacetGrid(att, col="subject", col_wrap=5, height=1.5)
>>> g = g.map(plt.plot, "solutions", "score", marker=".")
Define a custom bivariate function to map onto the grid:
>>> from scipy import stats
>>> def qqplot(x, y, **kwargs):
... _, xr = stats.probplot(x, fit=False)
... _, yr = stats.probplot(y, fit=False)
... plt.scatter(xr, yr, **kwargs)
>>> g = sns.FacetGrid(tips, col="smoker", hue="sex")
>>> g = (g.map(qqplot, "total_bill", "tip", **kws)
... .add_legend())
Define a custom function that uses a DataFrame
object and accepts
column names as positional variables:
>>> import pandas as pd
>>> df = pd.DataFrame(
... data=np.random.randn(90, 4),
... columns=pd.Series(list("ABCD"), name="walk"),
... index=pd.date_range("2015-01-01", "2015-03-31",
... name="date"))
>>> df = df.cumsum(axis=0).stack().reset_index(name="val")
>>> def dateplot(x, y, **kwargs):
... ax = plt.gca()
... data = kwargs.pop("data")
... data.plot(x=x, y=y, ax=ax, grid=False, **kwargs)
>>> g = sns.FacetGrid(df, col="walk", col_wrap=2, height=3.5)
>>> g = g.map_dataframe(dateplot, "date", "val")
Use different axes labels after plotting:
>>> g = sns.FacetGrid(tips, col="smoker", row="sex")
>>> g = (g.map(plt.scatter, "total_bill", "tip", color="g", **kws)
... .set_axis_labels("Total bill (US Dollars)", "Tip"))
Set other attributes that are shared across the facetes:
>>> g = sns.FacetGrid(tips, col="smoker", row="sex")
>>> g = (g.map(plt.scatter, "total_bill", "tip", color="r", **kws)
... .set(xlim=(0, 60), ylim=(0, 12),
... xticks=[10, 30, 50], yticks=[2, 6, 10]))
Use a different template for the facet titles:
>>> g = sns.FacetGrid(tips, col="size", col_wrap=3)
>>> g = (g.map(plt.hist, "tip", bins=np.arange(0, 13), color="c")
... .set_titles("{col_name} diners"))
Tighten the facets:
>>> g = sns.FacetGrid(tips, col="smoker", row="sex",
... margin_titles=True)
>>> g = (g.map(plt.scatter, "total_bill", "tip", color="m", **kws)
... .set(xlim=(0, 60), ylim=(0, 12),
... xticks=[10, 30, 50], yticks=[2, 6, 10])
... .fig.subplots_adjust(wspace=.05, hspace=.05))
Methods
__init__ (data[, row, col, hue, col_wrap, …]) |
Initialize the matplotlib figure and FacetGrid object. |
add_legend ([legend_data, title, label_order]) |
Draw a legend, maybe placing it outside axes and resizing the figure. |
despine (**kwargs) |
Remove axis spines from the facets. |
facet_axis (row_i, col_j) |
Make the axis identified by these indices active and return it. |
facet_data () |
Generator for name indices and data subsets for each facet. |
map (func, *args, **kwargs) |
Apply a plotting function to each facet’s subset of the data. |
map_dataframe (func, *args, **kwargs) |
Like .map but passes args as strings and inserts data in kwargs. |
savefig (*args, **kwargs) |
Save the figure. |
set (**kwargs) |
Set attributes on each subplot Axes. |
set_axis_labels ([x_var, y_var]) |
Set axis labels on the left column and bottom row of the grid. |
set_titles ([template, row_template, …]) |
Draw titles either above each facet or on the grid margins. |
set_xlabels ([label]) |
Label the x axis on the bottom row of the grid. |
set_xticklabels ([labels, step]) |
Set x axis tick labels on the bottom row of the grid. |
set_ylabels ([label]) |
Label the y axis on the left column of the grid. |
set_yticklabels ([labels]) |
Set y axis tick labels on the left column of the grid. |
Attributes
ax |
Easy access to single axes. |